15 year-old boy with syncope and polyuria
15 yo Caucasian boy presents with few syncopal and near-syncopal episodes with exercise

- Eval by cardiology → sinus bradycardia
- Has a history of a “salt-problem” since infancy; previously followed by Pediatric Endocrinology
 - Stopped taking medication 9 years ago
 - Likes salty foods
 - Urinates ~ 7 times daily
HPI continued...

- ROS
 - Nl appetite; craves salty foods
 - Denies fatigue, wt loss, syncope at rest, seizures, H/A, palpitations, skin changes
 - + polyuria, + polydipsia
 - Growth spurt with voice change at ~ age 13 yrs.

- Meds
 - None

- Allergies
 - None

- Physical Exam
 - Wt: 58 kg (25-50th%), Ht: 170.4 (25-50th%)
Past Medical History

- **Birth Hx:**
 - Mother received terbutaline for premature labor @ 6 months gestation
 - Full term, NSVD, mild jaundice; BW: 7 lbs 2 oz (30th%)
 - Breastfed x 2wks
 - 2 week visit 6.5lbs; continued wt. loss despite good po, 8-10 wet diapers/day
 - Admitted to Comer age 6 weeks for FTT and abnormal electrolytes
Family History
- No consanguinity
- Maternal uncle w/ edema and brown urine tx w/ prednisone

Physical Exam
T 36.9 BP 77/39 HR 177 Lt: 53.5cm (10^{\text{th}}\%)
Wt: 3.03 kg (< 3rd\%)
 - Skin tented, nl pigmentation
 - Ant fontanelle flat
 - Stretched phallus length
 - 3.5 cm, nl descended testes

128 89 35
6.2 17 0.2
Newborn screen neg for CAH TFTs, UA, UGI nl per PMD
Differential Diagnosis

- **Adrenal**
 - Congenital Adrenal Hyperplasia
 - Aldosterone deficiency
 - Defects in Cholesterol Biosynthesis
 - Adrenal hypoplasia congenita
 - Bilateral adrenal hemorrhage

- **Renal**
 - Aldosterone resistance
 - Autosomal recessive/Autosomal dominant Pseudohypoaldosteronism type 1
 - Pseudohypoaldosteronism type 2
 - Transient PHA secondary to renal injury

- **Central**
 - CRH or ACTH deficiency or resistance
Results

ACTH 51 pg/mL (9-52)
Cortisol 38 mcg/dL

Aldosterone 1207 ng/dL (5-90)
Renin >5000 mcU/mL
Urine Aldo 25 mcg/18h (1-8 mcg/24h)

17-OHprogesterone: <120 ng/dL (36-763)

Renal U/S: mild dilated of right collecting system

Newborn screen neg for CAH
TFTs, UA, UGI nl per PMD

UA: S.G. 1.007
chem and micro neg
UNa 27 mEq/L Cr 11.3 mg/dL
FeNa 0.37

UOP 5-6ml/kg/h
Results

- **ACTH stimulation:**

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone</td>
<td>1207</td>
<td>1506</td>
</tr>
<tr>
<td>Renin</td>
<td>>5,000</td>
<td>>30,000</td>
</tr>
<tr>
<td>Cortisol</td>
<td>26</td>
<td>70</td>
</tr>
<tr>
<td>17-OHP</td>
<td><120</td>
<td>310</td>
</tr>
</tbody>
</table>

- **Dx:** Pseudohypoaldosteronism
Clinical Course

- Began and Na supplementation and Florinef
- Continued polyuria with nl electrolytes
- Found not to have Na channel defect
- Added natural licorice-could not tolerate taste
- No endo follow-up for nearly 10 years
- Present day: Neurocardiogenic syncope exacerbated by hypovolemia vs cardiogenic causes
 - Aldo 39 (< 22), Renin 2.5 (1.4-2.4), NI BMP
 - Increase fluid/salt intake prior to exercise, consider Florinef
- *Glycyrrhiza glabra*-native to Asia and Mediterranean
- Genus name *Glycyrrhiza* (Gr. *Glykos* (sweet) + *rhiza* (root))
- Active ingredient: Glycyrrhizin
- Metabolites include glycyrrhetic acid and its analog Carbenoxolone

Purported Medicinal Uses

<table>
<thead>
<tr>
<th>Treatment of Addison’s disease</th>
<th>Peptic ulcers, dyspepsia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycemic control in NIDDM</td>
<td>Antiviral; Hepatitis C</td>
</tr>
<tr>
<td>Cough and asthma</td>
<td>treatment</td>
</tr>
<tr>
<td>Infertility in women</td>
<td>Hepatotoxicity protection</td>
</tr>
<tr>
<td>Hirsutism</td>
<td>Anti-carcinogenic</td>
</tr>
<tr>
<td></td>
<td>Memory improvement</td>
</tr>
</tbody>
</table>
Mechanism of Action

- Glycyrrhizic acid inhibits 11-β-hydroxysteroid dehydrogenase type 2 (Stewart et al 1989)
 - Creates clinical state similar to Apparent Mineralocorticoid Excess
 - as little as 700mg/day glycyrrhizic acid can cause Na retention

Stewart et al 1987
Carbenoxolone:

Glycyrrhizic acid:

Figure 1. The 11βHSD isoenzymes: (1) 11βHSD1 is a NADPH-dependent reductase (that converts inactive cortisone to active cortisol) and a dehydrogenase (that converts cortisol to cortisone), expressed in the liver, adipose, gonadal and central nervous system tissues. 11βHSD1 functions mostly as a reductase in intact cells and organs. (2) 11βHSD2 is a NAD-dependent dehydrogenase enzyme that is highly expressed in the kidney and colon.

Espínldola-Atunes D, Kater CE
Treatment in Pseudohypoaldosteronism

- Carbenoxolone may have a role in Pseudohypoaldosteronism

Arai et al. 1994
Renin-Aldosterone suppression in renal PHA but no response to carbenoxolone in multiorgan PHA

- Difference in response as compared with Arai et al may be age-related

Hanukoglu et al 1997
References

