21-year-old female with papillary thyroid carcinoma

Celeste Thomas MD January 26, 2012

History of Present Illness

- 21-year-old woman
- Saw her PCP to request a referral to dermatology
- Found to have a fullness in her neck on the left side → ultrasound → FNA → papillary thyroid cancer
- CT imaging concerning for left lymph node involvement
- No dysphagia, cough, shortness of breath, dysphonia

History of Present Illness

- No family history of thyroid cancer
- Employed as a radiation technologist in a veterinarian's office
 - Past three years (since age 19)
 - Each animal gets approximately three images while she is holding them
 - She hold four animals a day, three to four days a week
 - Wears a lead garment to cover her trunk but no thyroid collar

History

- Past Medical History
 - Gluten Sensitivity
 - Anemia
 - Past Surgical HistoryTonsillectomy, age 13

- Allergies: NKDA
 Medications: None
 - Family History
 - Mother with history of nontoxic goiter, being evaluated for hyperparathyroidism
 - No thyroid cancer
 - Social History
 - Employment
 - Tobacco, 5 cigarettes in lifetime
 - Rare alcohol use, No illicit drugs

Physical Exam

- Vital signs: BP 102/61, Pulse 58, Temp 96.3, RR 18 Ht 5'6", Wt 155 lb
- Gen: well-nourished, no distress
 HEENT: EOMI, no Chvostek sign
- Neck: incision c/d/l, JP drain in left neck
- CV: regular rate, no extra heart sounds
- Pulm: good respiratory effort, lungs CTAB
- Abd: bowel sounds present, soft, nontender
- Neuro: sensation intact to light touch

Ultrasound

Final Pathologic Diagnosis

Complete thyroidectomy:

- Papillary thyroid carcinoma, multifocal (largest nodule 2.5 cm)
- Chronic lymphocytic thyroiditis
- Parathyroid tissue without diagnostic abnormality
- Left neck contents, excision
 - Five level II lymph nodes, no tumor
 - Metastatic papillary thyroid carcinoma in 5 of 12 level III lymph nodes
 Metastatic papillary thyroid carcinoma in 2 of 4 level IV lymph nodes

Radiation Units

 Activity: The number of times each second a radioactive material decays and releases radiation

- Disintegration/sec=1 Becquerel (Bq)
- 37 billion Bq = 1 curie
- Dose (absorbed): The amount of radiation energy absorbed into a given mass of tissue
- 1 joule/kg = 1 Gray
- I Gray = 100 rad (1 cGy = 1 rad)
- Dose (equivalent): energy per unit mass times adjustments for the type of radiation involved (quality factor) and the biological response in the tissue (a weighting factor)
 - Gray x quality factors= Sievert (Sv)
 - □ 1 Sievert =100 rem

DOE Low Dose **Radiation Research Program** U.S. DEPARTMENT OF ENERGY

Office of Science

Classic Paradigm of Radiation Injury (High Dose)

DOE Low Dose Radiation Research Program

United States Radiologic Technologists Cohort

- All registered radiologic technologists
 certified for a minimum of 2 years (N = 146,022) as of 1982
 - Baseline questionnaire to 133,519 in 1983-1984 (90,305 responded)
 - Second questionnaire mailed to 125,707 in 1994 (91,173 responded)
 - Both questionnaires completed and returned by 70,859 technologists

Radiation Technologists cohort

Follow-up of the cohort

- Date of first questionnaire completion until diagnosis of thyroid cancer, death, or completion of second questionnaire
- Participants reporting a diagnosis of thyroid cancer were contacted to obtain consent and acquire medical records
- Era employed was considered given improvement in radiation safety over time

Characteristics of Participants with Thyroid Cancer diagnosed during the first follow-up

		Thyroid Cancer after baseline		Thyroid Cancer Free	
		Ν	%	Ν	%
Gender					
	Female	104	86	56906	78
	Male	17	14	16053	22
Age at Baseline					
	<30	34	28.1	20690	28.4
	31-40	57	47.1	30225	41.4
	41-50	22	18.2	13484	18.5
	>= 51	8	6.6	8560	11.8
Age First Worked	A D D	NT/	TN		
	<18	1	0.8	1383	1.9
	18-20	78	64.5	42577	58.4
	>=21	41	33.9	27260	37.4
	Unknown	1	0.8	1793	2.4
Ever smoked 100 cigarettes		55	45.5	37947	52
Prior Thyroid Condition		27	22.3	6589	9

Results

- Early employment before 1950 was found to be associated with increased incident thyroid cancer before completion of the baseline survey
- The only determinant of occupational exposure that was related to prospective thyroid incidence was
 - Holding the patients for procedures at least 50 times, HR = 1.47 95% CI 1.01 2.15

References

- DeGroot, L, Paloyan, E 1973. Thyroid carcinoma and radiation. A Chicago endemic. JAMA 225:487
- Zabel E et al. Thyroid cancer and employment as a radiologic technologist. International Journal of Cancer: 2006. 119, (1940-1945).
- Dal Maso L et al. Risk factors for thyroid cancer: an epidemiological review focused on nutritional factors. Cancer Causes Control. 2009 20:75-86
- Tuttle R et. al. Empiric Radioactive Iodine Dosing Regimens Frequently Exceed Maximum Tolerated Activity Levels in Elderly Patients with Thyroid Cancer. The Journal of Nuclear Medicine. 2006 47:1587-1591.
 - U.S. Department of Energy, Office of Science, Low Dose Radiation Research Program