17yo female with pituitary mass

Payal Patel, MD
Pediatric endocrinology fellow
September 26, 2013
Chief Complaint

- 17 5/12yo F with h/o pituitary mass s/p transsphenoidal partial hypophysectomy
HPI

- Presented to PCP with various sx including dizziness, fatigue, temperature intolerance, loss of taste, palpitations, twitching
- Work-up (labs, EKG) were nL
- Saw a traditional Chinese doctor who recommended various herbs
- MRI done showed pituitary hyperplasia (8mm) at upper limits of nL for pubertal F but no clear mass
- Referred to NSGY and endo
ROS

- Constitutional: Negative for fever, +fatigue
- Endo: Negative for galactorrhea, polyuria
- HEENT: Negative for neck pain, +tinnitus, visual disturbances
- CV: +palpitations
- GU: Negative for menstrual abnormalities
- Skin: +flushing
- Neurol: Negative for HAs and syncope, +dizziness
- Psych: Negative for behavioral changes
Physical Exam

- Vitals: T 37°C, HR 87, RR 15, bp 109/53, wt 51.2 kg (50th%), ht 157.4 cm (25th%), BMI 21.4 kg/m² (54th%)
- General: well-developed, NAD
- HEENT: normocephalic, PERRL, intact visual fields
- Neck: thyroid palpable, not enlarged, smooth
- CV/Pulm/Chest: RRR, CTAB, Tanner 4 breasts, no discharge
- Neuro: alert, no focal deficits, 2+DTRs
- Skin: normal pigmentation, mild acanthosis on neck, comedonal facial acne
Labs

- TSH 1.85
- Total T4 6.6
- Free T4 1.15
- ACTH 14.5
- Cortisol 12.2
- Prolactin 10.5
- FSH 7.4
- LH 7.1
- 17OHP 47

- DHEAS 103
- Total testosterone 19
- Free testosterone 0.6
- SHBG 22
- Insulin 9.9
- HbA1C 5.2
- Urine cortisol 9.6
- Urine metanephrines 71
- CMP normal
Assessment/Plan

- Pituitary hyperplasia with intact pituitary function—monitor clinically
- Follow-up with NSGY and endo
- Repeat MRI in 3 months
3-month NSGY f/u

- HPI and PE stable
- MRI: interval growth of pituitary gland now abutting optic chiasm without compression (10 mm)
- Assessment: Pituitary hyperplasia vs. adenoma
- Plan: Repeat MRI in 6 months
Interval History

- Next 2.5 years: Pt followed up at Northwestern
- Developed peripheral visual field deficit, irregular menses, mildly elevated prolactin
- Repeat MRI showed R sided pituitary adenoma
- Surgery was recommended and she returned to U of C for second opinion
Interval History- cont’d

- ROS: Negative for fever, galactorrhea, polyuria, HAs +peripheral vision loss, heavy menses Q2weeks for last year
- FH: No change
- SH: Now in 11th grade. Still doing well in school.
- Meds: None
- PE: +bitemporal hemianopsia, Tanner 5 breasts, no discharge, no focal neuro deficits
Imaging
Labs

- TSH 1.07
- Free T4 1.05
- ACTH 9.9
- Cortisol 9.3
- Prolactin 71.34
- IGF₁ 333
- IGFBP₃ 5.0
- FSH 5.1
- LH 13.3
- Estradiol 136
- 17OHP 67
- DHEAS 176
- Total testosterone 23
- Free testosterone 8
- SHBG 17
- Androstenedione 187
Plan?
Management

- Dopamine agonist was considered
- Given prolactin level below <100s, progressive visual field deficits, surgical intervention was recommended by NSGY
Post-op concerns?
AVP

DI:
- Polyuria (>300 mL/kg/d)
- ↑ Serum osmolality (>300 mOsm/kg)
- ↓ Urine osmolality (<600 mOsm/kg)
- Hypernatremia
- polydipsia
Triphasic DI

Diabetes insipidus
Antidiuretic interphase
Diabetes insipidus

POD#1

- Increasing UOP since early AM: ~350 mL/hr (6.7 mL/kg/hr)
- Increasing Na: 140 → 141 → 150
- Increasing thirst but PO limited by nausea
Serum Na and UOP

POD#
Hospital Course - POD #6

Labs:
- TSH 0.02, fT4 0.71
- ADH < 0.5
- ACTH 14.1, Cortisol 0.4
- Prolactin 7.64
- FSH 0.7
- LH < 0.1
- Estradiol 5
- DHEAS < 15
Hospital Course- cont’d

- Drinking to thirst
- Possible D/C home
- Down-trending Na
Serum Na and UOP

POD#
Discharge

- Fluid restriction of 500 mL/d
- Pituitary labs to be rechecked as outpatient
- Stress-dose hydrocortisone instructions
Pathology

- All cell types present with nL architecture
- One small nest of monomorphic cells positive for prolactin
- nL MIB-1 activity
Clinical Questions

• What is the natural history of pituitary hypertrophy?
• How common is post-op DI?
• What are risk factors for developing DI?
Physiologic Pituitary Hypertrophy

- Pituitary enlargement (>9mm) in a young woman or adolescent girl should be considered **normal hypertrophy** if:
 - Pituitary MRI and labs are **normal**

TABLE 1. Baseline gonadotrophic hormonal and neuroradiological characteristics in seven patients with physiological enlargement of the pituitary gland

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age at diagnosis (yr)</th>
<th>Basal LH (IU/L)</th>
<th>LH peak* after GnRH (IU/L)</th>
<th>Basal FSH (IU/L)</th>
<th>FSH peak after GnRH* (IU/L)</th>
<th>Basal α-subunit (IU/L)</th>
<th>α-Subunit peak after GnRH* (IU/L)</th>
<th>Basal PRL (μg/L)</th>
<th>PRL peak after TRH† (μg/L)</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
<th>Follow-up duration (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>3.5</td>
<td>20</td>
<td>7</td>
<td>17</td>
<td>0.46</td>
<td>0.62</td>
<td>9</td>
<td>38</td>
<td>10.6</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0.6</td>
<td>33</td>
<td>2.2</td>
<td>7</td>
<td>0.33</td>
<td></td>
<td>15</td>
<td>154</td>
<td>11</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>9.4</td>
<td>22</td>
<td>6.2</td>
<td>8.3</td>
<td>0.28</td>
<td>0.6</td>
<td>8</td>
<td>107</td>
<td>10</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>4.8</td>
<td>14</td>
<td>3.9</td>
<td>6.6</td>
<td>0.3</td>
<td></td>
<td>13</td>
<td>66</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>16</td>
<td>59</td>
<td>8.4</td>
<td>11</td>
<td>0.3</td>
<td></td>
<td>20</td>
<td>43</td>
<td>12</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>2.8</td>
<td>174</td>
<td>3.2</td>
<td>11.5</td>
<td>0.52</td>
<td>4.4</td>
<td>22</td>
<td>107</td>
<td>9</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>14</td>
<td>174</td>
<td>5</td>
<td>11.5</td>
<td>0.52</td>
<td>4.4</td>
<td>22</td>
<td>107</td>
<td>12</td>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

How common is post-op DI?

<table>
<thead>
<tr>
<th>Study</th>
<th># of Procedures</th>
<th>Transient DI</th>
<th>Chronic DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berker et al.</td>
<td>624</td>
<td>29 (4.6%)</td>
<td>3 (0.5%)</td>
</tr>
<tr>
<td>Frank et al.</td>
<td>381</td>
<td>N/A</td>
<td>6 (1.6%)</td>
</tr>
<tr>
<td>Zhou et al.</td>
<td>375</td>
<td>14 (3.7%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Gondim et al.</td>
<td>341</td>
<td>15 (4.4%)</td>
<td>4 (1.2%)</td>
</tr>
<tr>
<td>Yano et al.</td>
<td>213</td>
<td>10 (4.7%)</td>
<td>2 (0.9%)</td>
</tr>
<tr>
<td>Dehdashti et al.</td>
<td>200</td>
<td>5 (2.5%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>

Risk factors for DI

TABLE 1. Incidence of postoperative diabetes insipidus in patients as determined by sex, tumor size, prior pituitary surgeries, intraoperative cerebrospinal fluid leaks, postoperative cerebrospinal fluid leaks, and preoperative apoplexy

<table>
<thead>
<tr>
<th></th>
<th>Total no.</th>
<th>No DI</th>
<th>Transient DI (<6 mo)</th>
<th>Permanent DI (>6 mo)</th>
<th>Overall DI</th>
<th>Incidence within subtype (%)</th>
<th>P value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>53</td>
<td>46</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>13.2%</td>
<td>0.545</td>
<td>0.23–1.79</td>
</tr>
<tr>
<td>F</td>
<td>57</td>
<td>46</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td>19.3%</td>
<td>0.545</td>
<td>0.56–4.41</td>
</tr>
<tr>
<td>Adenoma size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroadenoma</td>
<td>78</td>
<td>66</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>15.4%</td>
<td>0.997</td>
<td>0.28–6.74</td>
</tr>
<tr>
<td>Microadenoma</td>
<td>17</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>11.8%</td>
<td>0.997</td>
<td>0.15–3.63</td>
</tr>
<tr>
<td>Intraoperative CSF leak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>36.8%</td>
<td>0.021</td>
<td>1.38–13.07</td>
</tr>
<tr>
<td>No</td>
<td>91</td>
<td>80</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td>12.1%</td>
<td>0.021</td>
<td>0.08–0.73</td>
</tr>
<tr>
<td>Postoperative CSF leak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9.1%</td>
<td>0.797</td>
<td>0.06–4.02</td>
</tr>
<tr>
<td>No</td>
<td>99</td>
<td>82</td>
<td>14</td>
<td>3</td>
<td>17</td>
<td>17.2%</td>
<td>0.797</td>
<td>0.25–17.3</td>
</tr>
<tr>
<td>Previous pituitary resection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous nonendoscopic transsphenoidal</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>42.9%</td>
<td>0.01</td>
<td>1.55–17.77</td>
</tr>
<tr>
<td>Previous endoscopic transsphenoidal</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.984</td>
<td>0.02–8.12</td>
</tr>
<tr>
<td>Previous craniotomy</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.519</td>
<td>0.07–42.07</td>
</tr>
<tr>
<td>All previous</td>
<td>20</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>30%</td>
<td>0.137</td>
<td>0.90–8.65</td>
</tr>
<tr>
<td>No previous</td>
<td>90</td>
<td>78</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>13.3%</td>
<td>0.137</td>
<td>0.12–4.12</td>
</tr>
<tr>
<td>Apoplexy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.984</td>
<td>0.02–8.12</td>
</tr>
<tr>
<td>No</td>
<td>105</td>
<td>87</td>
<td>15</td>
<td>3</td>
<td>18</td>
<td>17.1%</td>
<td>0.984</td>
<td>0.12–43.92</td>
</tr>
<tr>
<td>Tumor types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfunctioning adenoma</td>
<td>61</td>
<td>52</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>14.8%</td>
<td>0.52</td>
<td>0.27–1.67</td>
</tr>
<tr>
<td>GH-secreting</td>
<td>15</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>13.3%</td>
<td>0.70</td>
<td>0.12–2.68</td>
</tr>
<tr>
<td>RCC</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>50%</td>
<td>0.003</td>
<td>2.0–25.8</td>
</tr>
<tr>
<td>ACTH-secreting</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11.1%</td>
<td>0.75</td>
<td>0.19–4.6</td>
</tr>
<tr>
<td>Prolactinoma</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.36</td>
<td>0.01–3.1</td>
</tr>
<tr>
<td>Craniopharyngioma</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.55</td>
<td>0.04–17.5</td>
</tr>
<tr>
<td>Chordoma</td>
<td>2 (1.8%)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.55</td>
<td>0.04–17.5</td>
</tr>
<tr>
<td>FAS-secreting</td>
<td>1 (0.9%)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0.48</td>
<td>0.05–34.7</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>92</td>
<td>18</td>
<td>15</td>
<td>3</td>
<td>19.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk factors for DI

- Na > 145 mmol/L in the first 5 days post-op → increased risk of permanent DI
 - A single serum Na of > 145 → 23.3% risk of permanent DI
 - Sensitivity 87.5%, specificity 83.5%

- 4 out of 96 (0.04%) of pts with Na < 145 mmol/L developed transient DI
 - NPV 99.5%

Summary

• Pituitary hyperplasia is a physiologic phenomenon that occurs in adolescent/young adult females
 ▫ Suggests normal variations in size, which persist over time
 ▫ Characteristics that are not supportive of benign etiology include: AbL MRI, AnL labs, clinical sx
• Risk factors for DI: Na > 145 mmol/L, previous non-endoscopic pituitary surgery, RCC pathology
References