11 year-old female with altered mental status in the setting of diabetic ketoacidosis

Katie O’Sullivan, M.D.
Fellow
Adult/Pediatric Endocrinology
University of Chicago
Thursday, January 23rd, 2014
Chief Complaint

- 11 yr and 10-mo female with history of Type 1 DM from out of state
- Presented with nausea and elevated blood sugars x 1 day
- Visiting father in Chicago over winter vacation
History of Present Illness

• Day prior to admission:
 ▫ Felt “sick” in the evening, did not sleep well
 ▫ Several episodes non-bloody, non-bilious emesis
 ▫ Generalized abdominal pain
 ▫ Loose stool x3-4
 ▫ Diminished appetite
 ▫ Dehydrated 2º polydipsia -> rehydrated with OJ
 ▫ Polyuria x 1 day, no dysuria
• Blood sugar “high”; + ketonuria → urgent care (no sick day rules attempted)
Diabetes History

- Diagnosis: 9 yo when admitted with DKA
- Hospitalizations for DM: once (at onset)
- Follows Endocrine physician group out of state
 - Last visit: 2 wks PTA
 - Last HgbA1c: 11%
- Insulin pump 2012-13
 - d/c’d 2 wks PTA for non-compliance
Home Diabetes Management

- Home insulin regimen:
 - Lantus 15 units qhs
 - Humalog mealtime 1:15g with BF, L; 1:20g with D
 - Humalog hyperglycemia correction = 1u:75 >100
- Insulin injection sites: abdomen, arms
- BG monitoring: Reported 5x/day
Glucometer Interrogation

<table>
<thead>
<tr>
<th>Date</th>
<th>BF</th>
<th>L</th>
<th>D</th>
<th>Bed</th>
<th>4am</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/28</td>
<td></td>
<td></td>
<td></td>
<td>357</td>
<td>258</td>
</tr>
<tr>
<td>12/27</td>
<td>62</td>
<td></td>
<td></td>
<td>145</td>
<td>114</td>
</tr>
<tr>
<td>12/26</td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/25</td>
<td></td>
<td></td>
<td></td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>12/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/22</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>
More History...

- **Past Medical History:**
 - Type 1 DM

- **Surgical History:**
 - None

- **Allergies:**
 - NKDA

- **Medications:**
 - Insulin (as previously described)

- **Social History:**
 - “Good Student”
 - Lives in mother
 - Visiting father in Chicago over holidays

- **Family History:**
 - No diabetes, thyroid disease or other autoimmune disease
Review of Systems (Page 1 of 2)

- **General:**
 - +fatigue, +anorexia, +weight loss (4lb), +polydipsia.
 - No fever or chills.
- **HEENT:**
 - +dry lips/mouth.
 - Negative for congestion, rhinorrhea, dysphagia, sore throat.
- **Cardiac:**
 - +chest pain with deep breath and ”heart racing.”
 - No lower extremity edema.
- **Pulm:**
 - +shortness of breath x 1 day.
 - No cough.
Review of Systems (Page 2 of 2)

• Abdomen:
 ▫ +generalized abdominal pain. +nausea, +vomiting, +loose stool.
• GU:
 ▫ +polyuria
 ▫ No dysuria.
• Skin:
 ▫ +dry skin.
 ▫ No rash.
• MSK:
 ▫ +generalized muscle pain/arthralgias x 1 day.
• Neuro:
 ▫ +confused, +headache 6/10.
 ▫ No seizures.
Urgent Care Course (OSH)

• Serum Chemistry:

<table>
<thead>
<tr>
<th>138</th>
<th>97</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>10</td>
<td>1.7</td>
</tr>
</tbody>
</table>

 819

• Anion Gap: **36**
• Urine ketones: **>160 mg/dL**
• **Treatment:**
 - **20cc/kg bolus NS** and transfer to Comer Children’s PICU
Physical Exam upon arrival to PICU

- Vitals: T 99.7°F, P 147, BP 111/57, R 28, 100% on room air, Wt 35.9kg
- General: appears uncomfortable
- HEET:
 - conjunctiva normal, oropharynx clear.
 - +dry mucous membranes.
- Neck:
 - supple.
 - +thyroid mildly enlarged, symmetric.
- Chest: tanner IV breast.
- CV:
 - +tachycardia
 - no murmur.
• Pulmonary:
 ▫ Deep, labored breathing
 ▫ clear to auscultation
• Abdominal:
 ▫ normal bowel sounds, soft, non-distended
 ▫ +tender diffusely, no guarding or rebound
• Genitourinary: Tanner 4 pubic hair
• MSK:
 ▫ tender diffusely
• Neuro:
 ▫ +decreased muscle tone.
 ▫ waxing and waning mental status
• Skin:
 ▫ warm, cap refill < 3 sec.
 ▫ +diaphoretic. +pallor. +lipohypertrophy on back of the arms.
Laboratory Studies on Admission (22:00)

- VBG: pH 7.061, POC2 15, Base excess -24
- Beta-OHB: 10.14 mmol/L
- Lactate 4.67 mmol/L
- Serum osmolality: 358 (275-295 mOsm/kg)
- Urinalysis: 1.027, 1+ protein, 3+ glu, 3+ketones, (-) LE, (-) WBC
- HgbA1c: 10.6%
Next Step in Management

21:00

- Started continuous infusion insulin 0.1 units/kg/hr
- Started NS at 110 cc/hr (= MIV rate)
- Attempt A-line for more frequent lab monitoring
Overnight Course

<table>
<thead>
<tr>
<th>Time</th>
<th>PO C Glu</th>
<th>Glu</th>
<th>pH</th>
<th>Na</th>
<th>*Na</th>
<th>HCO3</th>
<th>AG</th>
<th>BHB</th>
<th>Osm</th>
<th>Clinical Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:00</td>
<td>> 550</td>
<td>794</td>
<td>7.06</td>
<td>136</td>
<td>147</td>
<td>4.2</td>
<td>48</td>
<td>10.1</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td>> 700</td>
<td>7.14</td>
<td>136</td>
<td>136</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Start insulin gtt, NS, attempt A-line</td>
</tr>
<tr>
<td>22:30</td>
<td>> 550</td>
<td>550</td>
<td>7.15</td>
<td>146</td>
<td>153</td>
<td><5</td>
<td>37</td>
<td>>9</td>
<td></td>
<td>Changed fluid to half rate D10NS + half rate NS</td>
</tr>
<tr>
<td>23:00</td>
<td>535</td>
<td>7.15</td>
<td>146</td>
<td>153</td>
<td><5</td>
<td>37</td>
<td>>9</td>
<td></td>
<td>Change in mental status +headache</td>
<td></td>
</tr>
</tbody>
</table>

*Na = corrected Na
<table>
<thead>
<tr>
<th>Time</th>
<th>Glu</th>
<th>pH</th>
<th>Na</th>
<th>*Na</th>
<th>HCO₃</th>
<th>BHB</th>
<th>Osm</th>
<th>Clinical Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:00</td>
<td>535</td>
<td>7.15</td>
<td>146</td>
<td>153</td>
<td><5</td>
<td>>9</td>
<td></td>
<td>Change in mental status + headache</td>
</tr>
<tr>
<td>24:00</td>
<td>442</td>
<td>7.18</td>
<td>150</td>
<td>155</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:00</td>
<td>418</td>
<td>7.28</td>
<td>148</td>
<td>153</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:30</td>
<td>342</td>
<td>7.25</td>
<td>148</td>
<td>152</td>
<td>12</td>
<td></td>
<td></td>
<td>Changed to D10NS</td>
</tr>
<tr>
<td>03:30</td>
<td>351</td>
<td>7.25</td>
<td>150</td>
<td>154</td>
<td>13</td>
<td>5.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00</td>
<td>344</td>
<td>7.26</td>
<td>150</td>
<td>154</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:30</td>
<td>284</td>
<td>7.3</td>
<td>151</td>
<td>154</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:15</td>
<td>244</td>
<td>7.33</td>
<td>151</td>
<td>153</td>
<td>21</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Glu</td>
<td>pH</td>
<td>Na</td>
<td>Corr Na</td>
<td>HCO 3</td>
<td>AG</td>
<td>BHB</td>
<td>Osm</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>08:15</td>
<td>244</td>
<td>7.33</td>
<td>151</td>
<td>153</td>
<td>21</td>
<td></td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>09:00</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>189</td>
<td>7.31</td>
<td>152</td>
<td>20</td>
<td>0.25</td>
<td>319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td>177</td>
<td>7.4</td>
<td>145</td>
<td>146</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Summary

- Pubertal female w/ T1DM under the care of a parent unfamiliar with DM sick-day management
- Presented with severe dehydration, DKA and hyperosmolarity in setting of insulin resistance +/- insulin omission
- Had steep drop in BG soon after initiation of treatment for DKA
- Developed mental status changes and treated with 3% HS with significant improvement
Cerebral Edema in DKA

- Life-threatening consequence of DKA
- Occurs in 0.5-1% of children with DKA
- Mortality is 21-24%
- Young children > adolescents > young adults
- Pathophysiology not well-understood
 - 1) Cytotoxic edema
 - 2) Vasogenic edema

Bohn, Desmond. Pediatric Critical Care Medicine 2010.
Clinical Questions

1. What are the most sensitive and specific signs/symptoms of cerebral edema in children?

2. Which osmotic agent is more effective in treating cerebral edema: hypertonic saline or mannitol?
Cerebral Edema in Childhood Diabetic Ketoacidosis

Natural history, radiographic findings, and early identification

Table 1—Bedside evaluation of neurological state of children with DKA

<table>
<thead>
<tr>
<th>Diagnostic criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal motor or verbal response to pain</td>
</tr>
<tr>
<td>Decorticate or decerebrate posture</td>
</tr>
<tr>
<td>Cranial nerve palsy (especially III, IV, and VI)</td>
</tr>
<tr>
<td>Abnormal neurogenic respiratory pattern (e.g., grunting, tachypnea, Cheyne-Stokes respiration, apneusis)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered mentation/fluctuating level of consciousness</td>
</tr>
<tr>
<td>Sustained heart rate deceleration (decline more than 20 bpm) not attributable to improved intravascular volume or sleep state</td>
</tr>
<tr>
<td>Age-inappropriate incontinence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vomiting</td>
</tr>
<tr>
<td>Headache</td>
</tr>
<tr>
<td>Lethargy or being not easily aroused from sleep</td>
</tr>
<tr>
<td>Diastolic blood pressure >90 mmHg</td>
</tr>
<tr>
<td>Age <5 years</td>
</tr>
</tbody>
</table>

Signs that occur before treatment should not be considered in the diagnosis of cerebral edema.

Cerebral Edema Diagnostic Criteria

- Abnormal motor or verbal response to pain
- Decorticate or decerebrate posture
- Cranial nerve palsy (esp III, IV, VI)
- Abnormal neurogenic respiratory pattern

Early Indicators of Cerebral Edema

• Major Criteria
 ▫ AMS
 ▫ Sustained HR deceleration not attributable to improved intravascular volume
 ▫ Age-inappropriate incontinence

• Minor Criteria
 ▫ Vomiting
 ▫ Headache
 ▫ Lethargy/Not easily aroused
 ▫ Diastolic BP >90mmHg
 ▫ Age <5

Clinical Question

- Which osmotic agent is more effective in treating cerebral edema: hypertonic saline or mannitol?
Mannitol vs. Hypertonic Saline for Treatment of Cerebral Edema

Decoursey et al. Pediatric Critical Care Medicine 2013.
TABLE 3. Adjusted Odds Ratio of Mortality in Patients Treated for Cerebral Edema in Diabetic Ketoacidosis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>OR (95% CI)</th>
<th>Adjusted OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment with hypertonic saline alone</td>
<td>2.03 (0.94–4.39)</td>
<td>2.71 (1.01–7.26)</td>
</tr>
<tr>
<td>Male gender</td>
<td>3.45 (1.79–6.65)</td>
<td></td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>22.8 (10.7–48.9)</td>
<td></td>
</tr>
<tr>
<td>Brain imaging with CT</td>
<td>2.14 (1.00–4.57)</td>
<td></td>
</tr>
<tr>
<td>International Classification of Diseases, 9th Revision code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250.2</td>
<td>3.84 (1.29–11.4)</td>
<td></td>
</tr>
<tr>
<td>250.3</td>
<td>3.31 (1.46–7.47)</td>
<td></td>
</tr>
</tbody>
</table>

OR = odds ratio.
Learning Points

- Cerebral edema is a devastating complication of DKA.
- Mechanism of cerebral edema in DKA is still unknown, but is likely multi-factorial.
- Cerebral edema is a clinical diagnosis and should be identified early with the bedside examination.
- Hypertonic saline may be associated with higher mortality than mannitol for the treatment of DKA but there are no definitive prospective trials comparing the two treatments.
Works Cited