10-year-old Female with Tall Stature

Payal Patel, M.D.
Pediatric Endocrinology Fellow
April 10, 2014
Chief Complaint

10 1/12 yo F with Marfan’s presents for evaluation of accelerated growth and tall stature.
HPI

- 1st evaluated by endocrine 5 years ago for premature pubarche (at 5 4/12 yrs)
- Labs showed:
 - Prepubertal FSH (1.6 mIU/mL), LH (0.15 mIU/mL), and estradiol (2 pg/mL)
 - Preadrenachal DHEAS (<15 ug/dL)
 - Normal IGF-1 (185 ng/mL)
- Bone age read as 7 10/12 yrs
- Followed up in the Marfan Clinic
- Returned for endo f/u this past year
HPI- over the last 1 year...

- Growth spurt
- Shoe size has increased from 13 to 19
- Significant weight gain
- Increase in pubic hair (first noted at 5 yrs)
- Breast development
- No menses
Review of Systems

- Constitutional: + Increased appetite and weight gain x1 yr
- Eyes: + Bilateral lens dislocation, wears bifocals
- Resp: – cough or shortness of breath.
- CV: – palpitations or chest pain. + Mild aortic dilatation
- GI: + Abd pain, recent dx of mesenteric adenitis. +chronic constipation
- GU: – urgency, frequency or enuresis. No menses
- MSK: + Back and knee pain. Falls often at school
- Skin: + Darkening around neck, axillae, knees and elbows
- Neurological: + Headaches, occasionally related to hair style
- Psych: + Increasing mood swings. – sleep problems.
Past Medical History

PMH:
- Marfan’s (diagnosed at 6 yrs)
 - Tall stature, lens dislocation, mild aortic root dilation, thoracic scoliosis
- Obesity
- Asthma
- Premature pubarche
- Developmental delay

PSH:
- Retinal tear repair (at 8 yrs)
Family History

- T2DM: mother, maternal family, paternal GM
- Hypertension: maternal family
- Early menarche: Maternal grandmother (at 8yrs)
- Father: 6’1”
- Mother: 5’6”, menarche at 15 yrs
- Maternal aunt: menarche at 11-12 yrs
Further History

- SH: Lives parents, 4 younger siblings and maternal GM. In 5th grade, has an IEP for cognitive impairment.
- Meds: losartan, amlodipine, albuterol
- Allergies: NKDA
Physical Exam

- **Vitals:** T 36.4, HR 95, BP 110/64, Ht 185.7 cm (6'1''), Wt 114 kg (252 lbs)
- **General:** NAD, wide shoulders with abdominal obesity
- **Eyes:** Conjunctivae and EOM nL, **wears bifocals**
- **Neck:** No thyromegaly
- **CV:** nL rate and rhythm, no murmur, strong pulses
- **Chest:** CTAB, **Tanner 3 breasts, Tanner 1 axillary hair**
- **Abd:** S/ND/NT. **Thin, vertical purple striae on flanks**
- **GU:** **Tanner 3 pubic hair**
- **MSK:** **Genu valgum, slight spinal curvature to left**
- **Neuro:** Alert, nL muscle tone, 2+ DTRs. No tremor on outstretched hands
- **Skin:** **Acanthosis on neck & axillae, minimal facial acne, no hirsutism**
Height
Weight
Labs

- FSH 4.5 (>2.7 mIU/mL)
- LH 1.1 (>0.2 mIU/mL)
- Estradiol 14 (>12 pg/mL)
- DHEAS 27 (32-226 ug/dL)
- Total testost. 12 (<44 ng/dL)
- Free testost. 5 (<9 pg/mL)
- Bone age 13 3/12 yrs
- GH 0.6 (<6 ng/mL)
- IGFBP-3 6.3 (3.1-8.9 ug/mL)
- IGF-1 227 (88-452 ng/mL)
- Insulin 63.4 uIU/mL (BG 118)
- HbA1C 6.3% (<5.7%)
- Cholesterol 134 (<199 mg/dL)
- Triglycerides 245 (<149 mg/dL)
- LDL 51 (60-129 mg/dL)
- HDL 34 (40-80 mg/dL)
Clinical Questions

- What is the role of estrogen in the treatment of tall stature in girls with Marfan’s syndrome (in regards to cardiovascular safety)?
Marfan’s

- Autosomal dominant connective tissue disorder
- Mutation in the FBN1 gene, which encodes fibrillin-1
- Prevalence = 1 in 3–5,000
 - 15–30% = new mutations
- May have ocular, skeletal, cardiovascular, integumentary, pulmonary, and/or neurological sx
- Diagnosis is primarily clinical
- Formal diagnosis may be made via the Ghent criteria and genetic testing
Review of Estrogen Treatment for Tall Stature

- Ethinyl estradiol (E2) is the most established estrogen preparation used.
- Dose ranges from 100-500 mcg daily.
- Two mechanisms:
 - Suppressive effect on IGF-1 → reduced effectiveness of GH.
 - Direct effect on epiphyseal cartilage.
- Side effects: fluid retention → increase in BP, and increased risk for clots.
Ethinyl Estradiol Treatment for Growth Limitation in Girls With Marfan’s Syndrome—Experience from a Single Center

Sema Kalkan Uca □ Wendy F. Paterson □ Malcolm D.C. Donaldson □ David Young

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>CA (years)</th>
<th>BA (years)</th>
<th>Ht (cm)</th>
<th>Ht SDS</th>
<th>Ht SDS BA</th>
<th>Tanner stage</th>
<th>Stop E₂</th>
<th>CA (years)</th>
<th>FHt/NFHt (cm)</th>
<th>PFHt (cm)</th>
<th>PFHt-FHt (cm)</th>
<th>FHt SDS</th>
<th>PFHt SDS</th>
<th>THt SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A: Treated</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.9</td>
<td>12.1</td>
<td>160.4</td>
<td>2.5</td>
<td>1.4</td>
<td>B2</td>
<td>16.6</td>
<td>15.6</td>
<td>175.1</td>
<td>178.0</td>
<td>2.9</td>
<td>1.9</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>12.1</td>
<td>12.7</td>
<td>163.8</td>
<td>1.9</td>
<td>1.4</td>
<td>B1</td>
<td>14.0</td>
<td>14.6</td>
<td>170.6</td>
<td>175.0</td>
<td>4.4</td>
<td>1.2</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>10.1</td>
<td>11.0</td>
<td>154.1</td>
<td>2.4</td>
<td>1.4</td>
<td>B1</td>
<td>-</td>
<td>16.4</td>
<td>175.0</td>
<td>177.5</td>
<td>2.5</td>
<td>1.9</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>7.1</td>
<td>10.6</td>
<td>141.6</td>
<td>3.8</td>
<td>-0.04</td>
<td>B1</td>
<td>-</td>
<td>14.6</td>
<td>176.6</td>
<td>184.0</td>
<td>7.4</td>
<td>2.1</td>
<td>3.5</td>
<td>-0.8</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>10.0 (2.1)</td>
<td>11.6 (0.9)</td>
<td>155.0 (9.8)</td>
<td>2.6 (0.8)</td>
<td>1.04 (0.7)</td>
<td>-</td>
<td>-</td>
<td>15.3 (0.8)</td>
<td>174.3 (2.6)</td>
<td>178.6 (3.8)</td>
<td>4.3 (2.2)</td>
<td>1.8 (0.4)</td>
<td>2.6 (0.6)</td>
<td>0.7 (1.2)</td>
</tr>
<tr>
<td>Group B: Untreated</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.8</td>
<td>12.3</td>
<td>160.8</td>
<td>3.7</td>
<td>1.3</td>
<td>B1</td>
<td>-</td>
<td>15.6</td>
<td>190.3</td>
<td>184.0</td>
<td>-6.3</td>
<td>4.4</td>
<td>3.4</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>9.8</td>
<td>11.9</td>
<td>158.4</td>
<td>3.3</td>
<td>1.3</td>
<td>B1</td>
<td>-</td>
<td>15.6</td>
<td>185.3</td>
<td>182.5</td>
<td>-2.8</td>
<td>3.6</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>7</td>
<td>11.3</td>
<td>12.1</td>
<td>167.1</td>
<td>3.0</td>
<td>2.4</td>
<td>B1</td>
<td>-</td>
<td>20.1</td>
<td>184.1</td>
<td>194.0</td>
<td>9.9</td>
<td>3.4</td>
<td>5.0</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>10.2</td>
<td>-</td>
<td>158.1</td>
<td>2.8</td>
<td>NK</td>
<td>-</td>
<td>18.1</td>
<td>189.9</td>
<td>177.5</td>
<td>-6.4</td>
<td>3.4</td>
<td>2.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.4</td>
<td>11.9</td>
<td>146.4</td>
<td>1.9</td>
<td>-0.4</td>
<td>B1</td>
<td>-</td>
<td>23.3</td>
<td>171.5</td>
<td>170.0</td>
<td>-1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>10.1 (0.7)</td>
<td>12.0 (0.2)</td>
<td>158.2 (7.5)</td>
<td>2.9 (0.7)</td>
<td>1.15 (1.1)</td>
<td>-</td>
<td>-</td>
<td>18.5 (3.3)</td>
<td>183.0 (6.9)</td>
<td>181.6 (8.8)</td>
<td>-1.4 (6.7)</td>
<td>3.2 (1.1)</td>
<td>3.0 (1.4)</td>
<td>1.8 (0.9)</td>
</tr>
</tbody>
</table>

Abbreviations: CA, chronological age; BA, bone age; Ht, height; FHt/NFHt, final height/near final height; SDS, standard deviation score; PFHt, projected final height; THt, target height.
Marfan’s Growth Curve - Females
Cardiovascular Surveillance

TABLE 3 Cardiovascular Surveillance of the Nine Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Pretreatment/Equivalent age</th>
<th>Post- or during treatment/Equivalent age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA</td>
<td>AR</td>
</tr>
<tr>
<td>Group A: Treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.2</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>12.3</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>25</td>
</tr>
<tr>
<td>Group B: Untreated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.9</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>11.9</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>13.9</td>
<td>30</td>
</tr>
<tr>
<td>8(a)</td>
<td>8.2</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>7.0</td>
<td>17</td>
</tr>
<tr>
<td>P</td>
<td>0.9</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Conclusions

- Optimal time to start may be at 10-11 yrs of age
- Treatment should be continued until height velocity decreases to < 1 cm/yr
- Echo should be done annually before and during estrogen tx
 - More frequent monitoring (including BP measurements) and preemptive beta blockade for girls with marked aortic dilation
- A prospective study with a larger population is needed
Clinical Questions

- What is the role of estrogen in the treatment of tall stature in girls with Marfan’s syndrome?
- How should aortic dilation be best managed in children with Marfan’s?
Angiotensin II Blockade and Aortic-Root Dilation in Marfan’s Syndrome

Benjamin S. Brooke, M.D., Jennifer P. Habashi, M.D., Daniel P. Judge, M.D., Nishant Patel, B.A., Bart Loeys, M.D., Ph.D., and Harry C. Dietz III, M.D.
Affect of ARB on Linear Growth

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-ARB</th>
<th>Post-ARB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Mean(±SD)</td>
</tr>
<tr>
<td>Change in Body Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg/yr)</td>
<td>3.4</td>
<td>3.62(1.59)</td>
</tr>
<tr>
<td>Weight Z-score/yr</td>
<td>+0.3</td>
<td>+0.61(2.54)</td>
</tr>
<tr>
<td>BMI (kg/m²/yr)</td>
<td>0.3</td>
<td>0.48(1.10)</td>
</tr>
<tr>
<td>BMI Z-score/yr</td>
<td>+0.1</td>
<td>+0.21(0.53)</td>
</tr>
<tr>
<td>Change in Linear Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm/yr)</td>
<td>9.0</td>
<td>9.63(7.47)</td>
</tr>
<tr>
<td>Height Z-score/yr</td>
<td>-0.1</td>
<td>+0.14(0.61)</td>
</tr>
<tr>
<td>Height Velocity Z-score</td>
<td>+0.7</td>
<td>+0.98(1.64)</td>
</tr>
</tbody>
</table>

Patient Update

- Underwent a 3-hr OGTT– confirmed impaired glucose tolerance
- Started Metformin
- Check BGs at home
- Diet modifications, increase physical activity
- Plan to start estrogen tx with Premarin 30 mcg daily
Summary

- Research supports the use of estrogen as a safe tx for tall stature in girls with Marfan’s (regarding CV risks)
 - More frequent monitoring is recommended for girls with marked aortic dilation
- Studies have shown no significant changes in the aortic root size post-estrogen tx
- Estrogen may aid in decreasing systolic and diastolic BPs in these patients
- For tx of aortic dilation, recent research suggests ARBs are superior to using a beta-blocker alone
- ARBs have been show to decrease the rate of aortic dilation
 - Efficacy thought to be due to decreased expression of TGF- beta
References

