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SUMMARY
Understanding the cellular composition of the tumor microenvironment and the interactions of the cells is
essential to the development of successful immunotherapies in cancer. We perform single-cell RNA
sequencing (scRNA-seq) of 9,885 cells isolated from the omentum in 6 patients with ovarian cancer and iden-
tify 9 major cell types, including cancer, stromal, and immune cells. Transcriptional analysis of immune cells
stratifies our patient samples into 2 groups: (1) high T cell infiltration (high Tinf) and (2) low T cell infiltration (low
Tinf). TOX-expressing residentmemory CD8+ T (CD8+ Trm) and granulysin-expressing CD4+ T cell clusters are
enriched in the high Tinf group. Concurrently, we find unique plasmablast and plasma B cell clusters, and
finally, NR1H2+IRF8+ and CD274+ macrophage clusters, suggesting an anti-tumor response in the high Tinf
group. Our scRNA-seq study of metastatic tumor samples provides important insights in elucidating the im-
mune response within ovarian tumors.
INTRODUCTION

Ovarian cancer is themost lethal malignancy of the female repro-

ductive tract (Siegel et al., 2017). Conventional therapy involving

cytoreductive surgery and chemotherapy is 90% effective when

cancer is diagnosed at the early stage, when it is still restricted to

1 or both ovaries. Unfortunately, most ovarian cancer cases are

diagnosed at stage III or IV, when the cancer has metastasized

and the diagnosis in these patients results in a 30% 5-year sur-

vival rate (Testa et al., 2018). To develop efficacious therapies for

metastatic ovarian cancer, we need to define the cellular hetero-

geneity and the transcriptional state within the tumor microenvi-

ronment. Immunohistochemical staining and flow cytometry

have been useful in categorizing the cell types based on specific

cell surface markers but mask intra-cellular heterogeneity. Bulk

RNA profiling has been used to categorize high-grade serous

ovarian carcinoma (HGSOC), the most common and lethal histo-

type of ovarian cancer, into molecular subtypes (Tothill et al.,

2008; The Cancer Genome Atlas Research Network, 2011).

However, bulk RNA sequencing (RNA-seq) averages gene

expression and fails to identify the respective contribution of

cell subsets. Single-cell RNA-seq (scRNA-seq) has emerged

as a powerful tool to interrogate tumor composition, revealing

cellular heterogeneity and gene regulatory networks at single-

cell resolution (Zheng et al., 2017b; Villani et al., 2017; Dixit

et al., 2016; Jaitin et al., 2016; Shalek et al., 2013; Zheng et al.,

2017a). Recently, a scRNA-seq study investigated the heteroge-

neity in the proposed cell of origin of HGSOC and revealed a high

epithelial-mesenchymal transition (EMT) prominent subtype
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associated with poor prognosis (Hu et al., 2020). So far, tran-

scriptomic studies in ovarian cancer have focused on cancer

cells. However, the tumor microenvironment contains other cell

types that are relevant to patient stratification, targeted treat-

ment, and outcomes.

The omentum is a commonmetastatic site for peritoneal malig-

nancies, including ovarian cancer (Krist et al., 1998). It is mainly an

adipose tissue that contains aggregates of immune cells in areas

called milky spots (Platell et al., 2000). These milky spots act

similar to lymph nodes, collecting and responding to antigen

within the peritoneal cavity. Interestingly, ovarian cancer cells

preferentially colonize adipose tissue with milky spots in the peri-

toneal cavity (Clark et al., 2013). In addition, adipocytes provide

adipokines and act as a source of energy for ovarian cancer cells

(Nieman et al., 2011). These factors prime the omentum as a pre-

metastatic niche for ovarian cancer. The initial presence of ovarian

cancer cells in the omentum leads to a recruitment of macro-

phages into the milky spots without anti-tumor effects. Contrast-

ingly, the presence of tumor-infiltrating CD8+ T cells in both the

ovary and omentum is associated with significantly longer overall

survival (Santoiemma and Powell, 2015). However, checkpoint in-

hibitors, a cancer immunotherapeutic approach, aimed at

restoring CD8+ T cell function have had a low response rate in

ovarian cancer patients (Santoiemma and Powell, 2015). We

therefore need a better understanding of the tumor microenviron-

ment to improve patient response to cancer immunotherapy.

In the present study, we use Drop-seq, a high-throughput sin-

gle scRNA-seq technique to examine the cells within omental tu-

mors from 6 patients with different pathology-graded histotypes
Cell Reports 35, 109165, May 25, 2021 ª 2021 The Author(s). 1
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Table 1. De-identified metadata for metastatic omental tumors from 6 ovarian cancer patients

Patient ID Age, y Race Origin Histologic type Histological grade Neoadjuvant therapy Stage (PMN/FIGO)

PT-1 62 white undetermined serous not applicable yes ypT3a Nx M1/IVb

PT-2 56 white left ovary high grade serous carcinoma high grade no pT3c Nx Mx/IIIc

PT-3 66 Black left fallopian (STIC) high grade serous carcinoma high grade yes ypT3c N1a/IIIc

PT-4 46 Asian left fallopian (STIC) high grade serous carcinoma high grade no pT3c Nx/IIIc

PT-5 71 Black left fallopian (STIC) high grade serous carcinoma high grade yes pT3c, N1, M1/IIIc

PT-6 66 Asian fallopian malignant mixed Mullerian tumor high grade yes ypT3c Nx/IIIc
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of ovarian cancer. We identified 12 cell clusters among the pa-

tient cell population and stratified the patient samples into 2

groups based on immune signatures: (1) a high T cell infiltration

(high Tinf) group, and (2) a low T cell infiltration (low Tinf) group.We

also identified macrophage and B cell subsets that were unique

to the high Tinf group. This concurrent single-cell transcriptomic

analysis of solid metastatic ovarian cancer tumors unravels the

genetic signatures of immune cell subsets within ovarian tumors

and can guide future immunotherapeutic approaches.
RESULTS

Characteristics of the tumor microenvironment
Ovarian cancer samples were collected from the omental met-

astatic site of 6 patients (Table 1). Four patients were diagnosed

with advanced HGSOC, 1 with serous carcinoma, and 1 with

malignant mixed Mullerian tumor (MMMT). The ages of the pa-

tients ranged from 46 to 71 years. Four of the patients received

neo-adjuvant therapy before surgery, including the patient

diagnosed with MMMT. As metastasis progresses, there is an

inverse relationship between ovarian tumor growth (cancer

and cancer-associated cell growth) and adipocytes within the

omentum (Nieman et al., 2011). Therefore, the area of tumor

occupied by adipocytes decreases with disease score (Pearce

et al., 2018). The area of adipocytes shown using hematoxylin

and eosin (H&E)-stained sections (Figure 1A) was reported as

a percentage of the total surface area of the samples and

used as a measure of disease score (Figure 1B), similar to

Pearce et al. (2018). We rated the patient samples from lowest

to highest disease score: PT-1–PT-6, respectively. The per-

centages of cancer cells, stromal cells, and immune cells

were quantified by immunohistochemistry (IHC) using anti-

bodies against cytokeratin-7 (CK-7), vimentin, and CD45,

respectively (Figures 1C–1H). There was a varying proportion

of each cell type across patients. Notably, we observed that

malignant cells in some patients (PT-1, PT- 4, PT-5, and PT-6)

double stained for CK-7 and vimentin, suggesting active EMT

(Figures 1C–1F). In addition, the MMMT (PT-6) sample had 2

different types of malignant cells that stained separately for

CK-7 and vimentin. We assessed the relationship between

the area of adipocytes and the cancer and stromal compart-

ments and observed a positive correlation with CD45+ immune

cells, suggesting that the less transformed the omental tissue,

the higher the CD45+ immune cells observed (Figure S1). We

also observed aggregation of immune cells closer to adipo-

cytes and sparsely otherwise throughout the rest of the tissue.
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These data reveal patient variability in the cellular transforma-

tion of tumors in the late pathological stage.
Generation of single-cell data, cell clustering, and cell-
type assignment
For Drop-seq experiments, each tumor sample was enzymati-

cally digested into a single-cell suspension and processed

(Macosko et al., 2015). We integrated all 6 omental samples

into a gene expression matrix that contains the expression

values of 9,885 cells and 40,947 genetic features such as protein

coding genes, pseudogenes, and long non-coding RNA

(lncRNA), mapped from the GENCODE (version GRCh38). Cells

from all of the patient samples had an average of 4,296 unique

molecular identifiers (UMIs), 1,742 genes, and 7.8% UMI counts

of mitochondrial origin per cell, as shown in Table 2. A minimum

cutoff of 600 genes per cell was set. Hierarchical clustering was

performed using a resolution of 0.2, with 12 clusters detected

(Figure 2A). Cells from each patient were present in the major

clusters (Figure S2; Table S1). The cell types were assigned

and curated using cell line correlation, canonical genes, and

functional categories according to significantly differentially ex-

pressed genes from the detected clusters. Wewere able to iden-

tify and assign a cell type to 9 major clusters with or without the

MMMT sample (Figures 2A and S2). This included 1 cluster each

for epithelial cells, fibroblasts, mesenchymal stem cells (MSCs),

embryonic stem cells (ESCs), endothelial cells, and 4 clusters of

immune cells. Three remaining unidentified clusters, marked N1,

N2, N3, contained relatively few cells (<60) and lacked confi-

dence in the identification of these cell types. Each patient sam-

ple had a varying proportion of cells in the 9 identified cell types/

clusters (Figure 2B). Previous bulk mRNA andmicroRNA expres-

sion studies have established 4 molecular subtypes of HGSOC

(The Cancer Genome Atlas Research Network, 2011; Tothill

et al., 2008). To assign molecular subtypes to our samples, we

extracted gene sets defining each ovarian cancermolecular sub-

type using The Cancer Genome Atlas (TCGA) data (The Cancer

Genome Atlas Research Network, 2011) and applied them to

our Drop-seq data. We found that all 4 molecular subtypes are

represented in each patient tumor sample, including the

MMMT sample (Figure 2C). We further analyzed which cell

type/cluster belonged to each molecular subtype. The differenti-

ated and proliferative subtypes mainly consisted of epithelial

cells. The immunoreactive subtype contained a high ratio of im-

mune cells. The low ratio of epithelial cells in the immunoreactive

subtype suggests that these tumors may be proliferative

or differentiated tumors with an immune response. The
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Table 2. Statistics andfilter parameters applied to samples collected from6patients and the resulting number of cells, genes, andUMI

per sample

Patient ID Raw reads Gene cutoff No. genes No. cells

Mean no.

genes per cell

Median no.

genes per cell

Mean no.

UMIs per cell

Median no.

UMIs per cell

PT-1 60,870,530 600 24,776 1,244 1,517 979 4,229 1,940

PT-2 308,036,080 800 32,024 3,451 1,894 1,391 4,802 2,796

PT-3 56,498,174 800 24,063 1,071 1,625 1,308 3,849 2,728

PT-4 144,287,737 700 19,297 1,102 1,830 1,391 5,235 3,034

PT-5 89,967,519 700 26,499 1,108 1,744 1,313 3,795 2,332

PT-6 77,505,171 800 26,221 1,909 1,624 1,387 3,425 2,595
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mesenchymal subtype is very different from the other subtypes,

consisting of a high ratio of fibroblasts. These findings are

consistent with a recent study from Schwede et al. (2020) that

examined bulk mRNA-seq TCGA data and reported that ovarian

cancer molecular subtypes reflect the proportion of cell types

within each tumor (Figure 2D).

We wanted to test whether the established molecular sub-

types could be useful in specifically categorizing cancer cells

within a tumor. However, most of the epithelial cells belonged

to the differentiated, proliferative, and undecided subtypes

(Figure 2D). Based on the expression ofWT1 andCD24, we refer

to this cluster as ‘‘cancer epithelial cells’’ (Figure S2) (Hylander

et al., 2006; Kristiansen et al., 2002). We also integrated our

data with previously published ovarian cancer scRNA-seq

data, and all of the cancer epithelial cells were co-localized

(data not shown) (Shih et al., 2018; Izar et al., 2020). The chon-

drosarcomatous elements of MMMT (PT-6) were confirmed by

our Drop-seq data (Figure S2; Table S1). Next, we extracted cells

from the central cluster, cancer epithelial cells, and ESCs that

cluster closely together and performed hierarchical clustering.

A total of 7 clusters were detected (Figure 2E, top). The heatmap

of the top 10 differentially expressed genes based on adjusted p

value for all subclusters are shown in Figure 2E (bottom). The top

processes as revealed by Gene Ontology analysis are epithelial

tube morphogenesis (cluster 2), epithelial cell differentiation

(clusters 3 and 5), and epithelial cell proliferation (cluster 6) (Table

S2). Epithelial ovarian cancer was the top disease for clusters 1,

3, and 6 (Table S2). Some previously described marker genes

that differentiate the subclusters are shown (Figure 2F and Table

S3). PAX8 andMUC16, indicative of advanced disease, were ex-

pressed by cluster 2 (adjusted p = 4.95 3 10�13 and 1.83 3

10�53) (Robertson et al., 1999; Thériault et al., 2011). MUC16

was also expressed by cluster 3 (adjusted p = 2.863 10�6). Clus-

ters 1 and 6 expressed both MKI67 (adjusted p = 3.5 3 10�168

and 4.19 3 10�31) and VIM (adjusted p = 0.01 and 3.92 3

10�32), indicative of a proliferating population. Cluster 5 ex-

pressed FN1 (adjusted p = 0.05) and ZEB1 (adjusted p = 0.01),
Figure 1. Immunohistochemical staining and sample description

(A and B) Hematoxylin and eosin (H&E)-stained sections (A) with (B) the histogra

(C and D) Cytokeratin-7 (CK-7) staining on patient samples (C) with (D) the histog

(E and F) Vimentin staining on patient samples (E) with (F) the histogram of perce

(G and H) CD45 staining on patient samples (G) with (H) the histogram of the per

Images were taken at (A) 403, and (C, E, and G) 4003.
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markers of EMT. Ovarian cancer stem cells, marked by the co-

expression of CD33, CD44, CD117, and CD24, were not

observed (Klemba et al., 2018). These results reveal a snapshot

of the heterogeneous transcriptional state of cancer cells during

the later course of disease (International Federation of Gynecol-

ogy and Obstetrics [FIGO] stages IIIc–IVb).

Immune cellular profile of patient samples
To investigate the immune population in our patient samples, we

performed clustering on the immune cells from the 6 patient

samples; the cells clustered into 4 main populations: T cells, B

cells, plasma B cells, and macrophages (Figure 3A). Using a

dendrogram to group samples with similar cell populations, our

cohort was separated into 2 groups based on their T cell popu-

lation: (1) the high T cell infiltration (high Tinf) group (PT-1 and PT-

2) and (2) low Tinf group (PT-3–PT-6) (Figure 3B). Interestingly, the

high Tinf group had the lowest disease scores (as determined by

IHC; Figure 1), while the low Tinf group showed relatively higher

disease scores. The results are consistent with and without the

MMMT sample (Figures 3B and S2); the MMMT sample (PT-6)

belongs to the low Tinf group (Figure 3B). Macrophages are re-

cruited from the peritoneal cavity during the initial phase of

metastasis (Shimotsuma et al., 1992; Oosterling et al., 2006).

The presence of M1 (CD68+) and M2 (CD163+) macrophages

were confirmed by IHC staining (Figure S3). To assess the differ-

ences in the macrophage population, we performed unsuper-

vised clustering separately on macrophages from the high Tinf
group and low Tinf group, respectively (Figures 3C and 3D).

Both groups had a CD163+CD204+ cluster that also highly ex-

pressed CD14 and FCGR3A reminiscent of tumor-associated

macrophages (TAMs) (Figures 3E, 3F, and S4; Table S4). Closely

associated with this cluster is the NR1H2+ cluster that is present

in both high Tinf and low Tinf group. NR1H2 inhibits inflammatory

genes in macrophages (Castrillo et al., 2003; A-González and

Castrillo, 2011). The high Tinf group also included aNR1H2+ sub-

cluster that expresses IRF8+ (adjusted p = 2.1 3 10�8). IRF8 is

induced in the presence of IFNG and promotes the formation
m of the percentage area of adipocytes in the patient samples.

ram of the percentage of CK-7+ cells.

ntage of vimentin-positive cells.

centage of CD45+ cells.
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of autophagosomes (Figures 3E, 3F, and S4) (Gupta et al., 2015).

Finally, the high Tinf group included aCD274+ cluster, suggesting

a regulatory population similar to myeloid-derived suppressor

cells (MDSCs). However, these CD274+ cells also express

CCR7 (adjusted p = 4.1 3 10�8), a marker for M1 macrophages

that are positively associated with survival time in cancer (Yuan

et al., 2015, Ma et al., 2010). Both NR1H2+IRF8+ and CD274+

clusters express FLT3. FLT3+ progenitors can differentiate into

osteoclasts, dendritic cells, microglia, and macrophages

(Servet-Delprat et al., 2002). The CD274+ cluster also expressed

ZBTB46 andCD80 (Figures 3G and 3H). There is a positive Pear-

son correlation (Table S4) between these markers, suggesting

that the CD274+ cluster is similar to M1 macrophages. We as-

sessed cluster N3 in our dataset, which closely resembles den-

dritic cells, albeit the few number of cells detected, for genes ex-

pressed bymacrophages. The N3 cluster (dendritic cells), mainly

found in the high Tinf group (Figure S2; Table S1), also expressed

IRF8, FLT3, andHLA.DRA (Figure S4). This analysis reveals tran-

scriptionally distinct macrophages present in tumors, in addition

to the presence of established TAMs.
Differences in T cell clustering and subtype analysis
To reveal the functional subtypes of T cells and differences in

the high Tinf versus low Tinf groups, we clustered 820 and 136

T cells, respectively (Figures 4A and 4B). To enable a fair com-

parison between the 2 disease groups, we randomly sub-

sampled the T cells within the high Tinf group to match the

T cell numbers in the low Tinf group. The subsampling was per-

formed 50 times for statistical confidence and the number of

T cell clusters in each group remained the same (data not

shown).

A total of 4 and 3 transcriptionally distinct clusters emerged

from high Tinf and low Tinf groups of T cells, respectively. The

highest differentially expressed genes revealed clusters similar

to previously described T cell phenotypes in breast cancer,

including CD4+IL7R+, CD4+FOXP3+, resident memory CD8+

T cells (CD8+ Trm cells), and 1 population described in lung can-

cer and liver cancer with high granulysin expression,

CD4+GNLY+ (Figures 4C–4F, S5, and S6) (Savas et al., 2018;

Guo et al., 2018; Zheng et al., 2017a). IFNG expressing CD8+

Trm clusters were present in both groups. Both groups also

had CD4+IL7R+ and CD4+FOXP3+ T cell clusters. The high Tinf
group had an extra CD4+GNLY+ (adjusted p = 6.09 3 10�18)

cluster. Contrastingly,GNLYwas expressed in the low Tinf group

by CD8+ Trm cluster (adjusted p = 1.64 3 10�6) (Figures 4D, 4F,

and S6; Table S5). TOX was only significantly highly expressed

(adjusted p = 4.23 3 10�3) by the CD8+ Trm cluster in the high

Tinf group, but not differentially expressed in the low Tinf group

clusters (Figures 4C and 4D; Table S5). TOX+ T cells persist dur-

ing chronic infection, and TOX is expressed by the CD8+ T cells
Figure 2. Cell-type and molecular subtype assignment using Drop-seq

(A) UMAP of high-quality cells from all 6 metastatic ovarian cancer samples from

(B) Ratio of cellular composition in each patient sample.

(C) Cancer subtype designation for each patient sample based on TCGA classifi

(D) Cancer subtype designation by cell type based on TCGA.

(E) UMAP and heatmap of top 10 genes per subcluster derived from epithelial ce

(F) Feature plots of relevant marker genes of 4,733 cells in the epithelial cell clus
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that are reactivated in response to programmed death-ligand 1

(PD-L1) immunotherapy (Yao et al., 2019; Khan et al., 2019).

CD8+ Trm cluster in the high Tinf group (Figure 4A) expressed

TOX, LAG3, and TIGIT (Figures 4E and 4F). The positive Pearson

correlation between TOX and markers of exhaustion suggests

that TOX+ T are exhausted T cells (Table S5). Based on TCGA

ovarian cancer data, the co-expression ofCD8 and TOXwas sta-

tistically significant in the immunoreactive subtype (p = 6.123 3

10�7***), the mesenchymal subtype (p = 0.0018**), and positive

but not significant in the differentiated subtype (p = 0.0603).

The correlation between CD4 and GNLY was significant in the

differentiated subtype (p = 3.383 3 10�5***), the mesenchymal

subtype (p = 0.0280*), the proliferative subtype (p = 0.0013**),

and positive but not significant in the immunoreactive subtype

(p = 0.0636; Table S6). According to theMayoClinic ovarian can-

cer cohort, patients within the immunoreactive subtype followed

by the differentiated subtype displayed the longest survival

(Konecny et al., 2014). Our data provide insights into molecular

markers that correlate and may be responsible for the increased

overall survival displayed by patients in the immunoreactive

subtype.
Transcriptionally distinct plasmablast and plasma cell
cluster in high Tinf group
To investigate the B cell subtypes in our samples, both naive and

plasmaB cells were clustered yielding 4 and 2 clusters in high Tinf
and low Tinf groups, respectively (Figures 5A and 5B). In the high

Tinf and low Tinf groups, the naive cluster highly expressed major

histocompatibility complex (MHC) class II genes (HLA.DRA,

HLA.DPA1, HLA.DQA1) (Figures 5C, 5D, and S5; Table S7). Tu-

mor-associated B cell subpopulations have previously been

defined; we assessed our dataset for these subsets using a com-

bination of gene expression and Pearson correlation (Griss et al.,

2019). In the high Tinf group, there were 3 PRDM1+ clusters:

SDC1+ plasma cells, CD38+ germinal center B cells, and the final

cluster highly expressed MHC class II genes, as well as MKI67

(adjusted p = 2.163 10�6), suggesting a plasmablast population

(Figures 5C, 5D, and S5; Table S7). Pearson correlation was

used to confirm co-expression between PRDM1 and other

marker genes in each B cell subset (Table S7). ThePRDM1+ clus-

ter in the low Tinf group expressed CD38, suggesting that they

are germinal center B cells. The presence of tertiary lymphoid

structures was confirmed using H&E andCD19 IHC staining (Fig-

ure S7). Activated B cells produce IFNG, so we assessed our

data for IFNG expression in the B cell subsets (Olalekan et al.,

2015). Plasmablasts expressed IFNG in the high Tinf group, while

none of the B cell clusters in the low Tinf group expressed IFNG

(Figure S5). Together with the T cell data, these results suggest

that B cells may contribute to the immune response within the tu-

mor microenvironment.
data

the omentum, colored by clustering results.

cation.

lls and ESCs.

ter, aggregated from all samples.
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DISCUSSION

The transcriptomic data of the 9,885 cells (not including adipo-

cytes; see Method details) collected from omental tumor sam-

ples in this study provide a holistic insight into the tumor micro-

environment of metastatic ovarian cancer. Mapping our cells to

curated cell types from the CellAtlas along with Gene Ontology

and pathway-based enrichment allowed robust cell-type assign-

ment compared to cell markers alone. Our approach allowed us

to simultaneously analyze the cancer and stromal compartments

of the tumor microenvironment with an emphasis on the different

immune cell types and subsets. We identified unique subpopu-

lations such as CD274+ and IRF8+ macrophages, CD4+GNLY+

T cells, plasmablasts, and plasma B cells. This comprehensive

approach helps unravel the interactions between the cells within

metastatic ovarian tumors at single-cell resolution.

The largest cluster of cells was cancer epithelial cells, which

composed �50% of the cells analyzed. Cells of the epithelial

subclusters expressed various genes associatedwithmetastatic

disease, including MUC16 and PAX8, while other subclusters

highly expressed EMT marker, vimentin. Of particular interest

was the presence of cancer stem cells (CSCs), a potentially use-

ful therapeutic approach to target ovarian cancer (Bast et al.,

2009). Like previous studies, we were unable to identify cells

that co-expressed known markers of stem cells (Shah and

Landen, 2014; Burgos-Ojeda et al., 2012). However, we identi-

fied a cell population closely resembling ESCs and adjacent to

the epithelial cell cluster that highly expressed proliferative

marker, MKI67. Successful identification, isolation, and interro-

gation of putative ESCs may provide useful insights about

CSCs in ovarian cancer.

Our data revealed a positive correlation between the presence

of adipocytes (by IHC) and immune cells (by Drop-seq). Howev-

er, infiltration of immune cells into the omentum during metasta-

tic cancer does not always elicit anti-tumor responses

(Oosterling et al., 2006). To this end, we sought to transcription-

ally characterize the immune cells within our samples. Our pa-

tient samples stratified into 2 groups: high Tinf and low Tinf, based

on similar T cell populations. In addition, our data revealed tran-

scriptionally distinct subclusters unique to macrophage and B

cell clusters in the high Tinf group. For macrophages, in addition

to the 2 clusters present in both groups, there were 2 clusters,

NR1H2+IRF8+ and CD274+ clusters, present only in the high

Tinf group. IRF8 and CD274 are upregulated in an activation-

dependent manner, suggesting that the high Tinf group may be

mounting an anti-tumor immune response. NR1H2+IRF8+ and

CD274+ clusters share similar gene expression, closely resem-

bling M1 macrophages. It could be that the macrophages in

the NR1H2+IRF8+ cluster are in a transitionary state; therefore,

stimulating them to becoming M1 macrophages may be another

approach for cancer immunotherapy.
Figure 3. scRNA-seq data of annotated immune population from all 6

(A) UMAP of immune cells showing the 4 main immune cell types based on corre

(B) Heatmap of immune cell types (T cell, B cell, plasma B cell, and macrophage)

(rows), dividing the samples into high and low T cell infiltration (Tinf) groups.

(C and D) UMAP plots of unsupervised clustering of annotated macrophages fro

(E and F) Heatmaps from immune cells showing differentially expressed markers

(G and H) Feature plots of expression in relevant genes in macrophages in high
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T cells are the central players in most immunotherapeutic ap-

proaches in oncology (Sharma and Allison, 2015). In our study,

we identified GNLY expressing CD4+ T cells and TOX express-

ing CD8+ Trm cells in our high Tinf group. Previous T cell

profiling studies have identified CD4+GNLY+ T cells in lung

and liver cancer (Zheng et al., 2017a; Guo et al., 2018). These

cells are suggested to have cytotoxic function similar to cyto-

toxic CD8+ T cells andmay provide a viable approach to cancer

therapy. Advances in personalized medicine have revealed

TOX as a transcription factor expressed by T cells that respond

to immune checkpoint blockade (Yao et al., 2019; Siddiqui

et al., 2019). In our tumor samples, TOX was mainly expressed

by the CD8+ Trm cluster in the high Tinf group. IFNG from cells of

the CD8+ Trm cluster in the high Tinf may be responsible for the

induction of IRF8 in macrophages. Interestingly, GNLY was ex-

pressed by the CD4+GNLY+ cluster in the high Tinf group and

CD8+ Trm cluster in the low Tinf group. The differences in the ef-

fect of granulysin from CD4+ T cells and CD8+ T cells on cancer

cells need to be investigated. Tumors can be categorized

based on their immunoscore (the basal immune response

within the tumor) from cold tumors to hot tumors to help guide

the personalization of cancer therapy (Galon and Bruni, 2019).

Future scRNA-seq analysis of T cells sampled from different re-

gions of tumors of different immunoscores will be informative in

guiding immunotherapeutic approaches. Our scRNA-seq data

(high Tinf group), bulk RNA-seq from TCGA and Mayo Clinic

data (immunoreactive and differentiated molecular subtypes),

taken together reveal that a high infiltration of CD8+TOX+ and

CD4+GNLY+ T cells may be a good indicator of patient survival

in ovarian cancer.

Tertiary lymphoid structures were detected in almost all tumor

samples, albeit to varying extents. The high Tinf and low Tinf
groups had germinal center B cells (PRDMI+CD38+). Interest-

ingly, the high Tinf group also had unique B cell subsets, including

(PRDMI+SDC1+) plasma cells and IFNG expressing plasma-

blasts (PRDMI+CD38+MKI67+). Previous study of tumor-induced

plasmablast-like B cell population supports the presence of

these cells in patients who respond to immune checkpoint

blockade (Griss et al., 2019). In addition, these plasmablast-

like cells increase PD-1+ T cell activation (Griss et al., 2019). It

will be useful to investigate the role of antigen-cognate plasma-

blasts in the generation and/or maintenance of TOX+ T cells.

Furthermore, these plasmablast-like cells expressed macro-

phage chemo-attractants and correlated positively with the

presence of CD8a (Griss et al., 2019). These studies, combined

with our current data, suggest an association between plasma-

blast-like B cells, CD8+TOX+ and CD4+GNLY+ T cells, and

NR1H2+IRF8+ and CD274+ macrophages. A mechanistic study

of these plasmablast-like and plasma B cells within the tumor

microenvironment is necessary to improve patient’s response

to immune checkpoint inhibitors.
patient samples

lation with CellAtlas cell type.

in each patient sample with dendrograms on cell types (columns) and patients

m (C) high Tinf (383 cells) and (D) low Tinf (312 cells) groups.

between clusters in (E) high Tinf and (F) low Tinf groups.

and low Tinf groups, respectively.



Figure 4. Characterization of annotated T cell population

(A and B) UMAP of T cells in (A) high Tinf (820 cells) and (B) low Tinf (136 cells) groups.

(C and D) Heatmaps of key genes in different clusters in (C) high Tinf and (D) low Tinf groups. Clusters in heatmaps are indicated by the same color as in the UMAP

plots.

(E and F) Violin plots showing scaled log-normalized expression values of key genes in (E) high Tinf and (F) low Tinf groups.
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Figure 5. Identification of B cell clusters across all patient samples

(A and B) UMAP plot for B cells in (A) high Tinf (396 cells) and (B) low Tinf (124 cells) groups.

(C and D) Heatmaps of key genes in different clusters in (C) high Tinf and (D) low Tinf groups. Clusters in heatmap are indicated by the same color as in the UMAPs.

(E and F) Violin plots showing scaled log-normalized expression values of key genes in (E) high Tinf and (F) low Tinf groups.
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In addition to the major cell types analyzed, there were other

clusters, including 1 each of endothelial cell, mesenchymal

stem cell, and fibroblast, and 3 clusters of undecided cell types

(N1, N2, N3). Endothelial cells line the luminal side of blood ves-

sels and are necessary for the metastasis of ovarian cancer cells

(Hanahan and Folkman, 1996). Fibroblast growth factor 18
10 Cell Reports 35, 109165, May 25, 2021
(FGF18) expressed by the cancer epithelial cells in our dataset

may enhance tumor angiogenesis (Figure S7) (Wei et al., 2013).

The MSCs were transcriptionally closest to the fibroblasts. In-

flamed omentum contains stem cells displaying similar surface

markers to MSCs (Shah et al., 2012; Friedenstein et al., 1968).

These stem cells are capable of differentiating into fat, cartilage,
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or bone, depending on the secreted factors present (Shah et al.,

2012; Friedenstein et al., 1968). Finally, there was a distinct fibro-

blast cluster in our samples. Metastatic transformation of the

omentum changes the cellular composition from mainly adipo-

cytes to cancer cells, immune cells, and fibroblasts (Pearce

et al., 2018). Cancer-associated fibroblasts (CAFs) mainly func-

tion to remodel the extracellular matrix in the tumor microenvi-

ronment (Kalluri, 2016). Recently, a scRNA-seq study of CAFs

in pancreatic cancer revealed a LRRC15+ CAF population that

correlated with poor response in patients treated with anti-

PD-L1 therapy (Dominguez et al., 2020). We identified LRRC15

expressing fibroblasts in our dataset (Figure S7). However,

their function in ovarian cancer immunotherapy needs to be

investigated.

The undecided clusters, from mapping to the CellAtlas cell

types, best correlate with astrocytes (N1), commonmyeloid pro-

genitor (CMP)/bone marrow progenitor (N2), and plasmacytoid

dendritic cells (N3), respectively. Although we were interested

in the dendritic cell population, we were restricted from further

analysis due to low cell count (<60).We also note that adipocytes

were separated during centrifugation after tumor digestion and

not included in the single-cell experiments. While a previous

scRNA-seq study reported the presence of mesothelial cells in

benign ovarian tumors (Shih et al., 2018), we did not detect

mesothelial cells in our metastatic dataset from the omentum.

Limitations of study
We note that our study was limited by the small number of pa-

tients and mix of histotypes. Our plan to include more HGSOC

or non-HGSOC samples was hindered by the current coronavi-

rus disease 2019 (COVID-19) pandemic, which resulted in the

cancellation of surgeries, difficulty in consenting patients, and

limited availability of fresh samples. To ensure that the sample

of MMMT histotype was not unduly influencing our conclusions,

we repeated our analyses after excluding theMMMT sample and

validated our results on HGSOC and serous samples.

This scRNA-seq study allows the stratification of patient solid

tumor samples initially pathologically classified as stage III or

greater, based on immune cellular composition of metastatic

ovarian cancer. Concurrent transcriptomic analysis of cancer

and stromal cells revealed patient heterogeneity, highlighting the

need for personalized medicine. Interrogating tumor-infiltrating

lymphocytes at the single-cell level also revealed tumor-intrinsic

responses in ovarian cancer. Ultimately, follow-up mechanistic

studies are required to further elucidate the roles of the transcrip-

tionally distinct immune cell clusters and how they can be manip-

ulated to enhance immunotherapeutic approaches.
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Antibodies

Anti-CD4 Abcam Cat# Ab183685; RRID: AB_2686917

Anti-CD8a Abcam Cat# Ab237709

Anti-CD19 Abcam Cat# Ab227688

Anti-Vimentin Abcam Cat# Ab16700; RRID:AB_443435

Anti-CD45 Agilent Cat# M0701; RRID:AB_2314143

Anti-CD68 Abcam Cat# Ab783; RRID: AB_306119

Anti-CD163 Abcam Cat# Ab74604; RRID: AB_1280790

Anti-Cytokeratin-7 Thermo Scientific Cat# MA5-11986; RRID:AB_10989596

Anti-TOX Thermofisher Cat# PA5-53781; RRID:AB_2648830

Anti-GNLY Abcam Cat# Ab241511; RRID:AB_241511

Biological samples

Human omental tissue University of Chicago

Human Tissue

Resource Center

IRB18-0099

Chemicals, peptides, and recombinant proteins

Penicillin-Streptomycin GIBCO Cat# 15140-122

Fetal Bovine Serum ATCC Cat# 302020

DMEM/F12- Dulbecco’s Modified Eagle Medium Thermo Fisher Cat# 11330032

Phosphate Buffered Saline Fisher bioreagents Cat# BP399-500

Formaldehyde solution 4%, buffered pH 6.9 Sigma-Aldrich Cat# 1004969010

Collagenase IV Sigma-Aldrich Cat# C5138

Hyaluronidase Sigma-Aldrich Cat# H3884-500MG

DNase I GoldBio Cat# D-301-100

HBSS Hank’s balanced salt solution Thermo Fisher Cat# 14175-103

Bovine Serum Albumin (BSA) 20 mg/ml New England Biolabs Cat# B9000S

1M DTT Solution Teknova Cat# D9750

10% Sarkosyl Solution Teknova Cat# S3376

20% Ficoll Solution Sigma Cat# F5415-50ML

Ethylenediamine tetraacetate acid (EDTA) 0.5M, pH 8.0 Fisher Cat# BP2482-500

Tris Hydrochloride 1M Solution, pH 7.5 Fisher bioreagents Cat# BP1757-500

Droplet Generation Oil for EvaGreen Bio-Rad Cat# 1864006

20X SSC Molecular Biology Grade Teknova Cat# S0282

Tris-EDTA, 1X Solution pH 8.0 Fisher bioreagents Cat# P2473-1

10% Tween-20 Solution Teknova Cat# T0710

10% SDS Solution Teknova Cat# S0288

Betaine Monohydrate Sigma-Aldrich Cat# 14300-500G

Magnesium Chloride Solution Sigma-Aldrich Cat# M1028-100ML

UltraPure PCR Deoxyncleotide Mix Takara Bio Cat# 639125

NxGen RNase Inhibitor Lucigen Cat# F83923

Maxima H Minus Reverse Transcriptase (200U/uL) Fisher Scientific Cat# EP0751

Exonuclease 1 (20U/uL) New England BioLabs Cat# M0293L

Kapa HiFi HotStart ReadyMix Fisher Cat# NC0465187

Absolute ethanol (200 Proof) Fisher Cat# BP2818-500

SPRI Select Beckman Coulter Cat# B23318

(Continued on next page)
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UltraPure Distilled Water Invitrogen Cat# 10977-015

Perfluorooctanol Synquest Laboratories Cat# 2101-3-29

PhiX Control V3 Illumina Cat# FC-110-3001

Critical commercial assays

Agilent high sensitivity chip Agilent Cat# 5067-4626

Nextera XT DNA kit Illumina Cat# FC-131-1096

Qubit dsDNA HS Assay kit Thermo Scientific Cat# Q32854

Dead cell removal kit Miltenyi Biotec Cat# 130-090-101

Red blood cell lysis kit Miltenyi Biotec Cat# 130-094-183

Deposited data

Raw fastq and the

processed digital

gene expression matrix files

Gene Expression Omnibus https://www.ncbi.nlm.

nih.gov/geo/query/acc.

cgi?acc=GSE147082

Oligonucleotides

Barcoded beads Chemgenes # CSO-2011 Bead–Linker –TTTTTTTAAGCAG

TGGTATCAACGCAGAGTACJJJ

JJJJJJJJJNNNNNNNNTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTT

Template_Switch_Oligo IDT, HPLC AAGCAGTGGTATCAACG

CAGAGTGAATrGrGrG

TSO_PCR IDT, standard desalting AAGCAGTGGTATCAACGCAGAGT

P5_TSO_Hybrid IDT, HPLC AATGATACGGCGACCA

CCGAGATCTACACGCCTGTCC

GCGGAAGCAGTGGTAT

CAACGCAGAGT*A*C

Nextera_N701 IDT, standard desalting CAAGCAGAAGACGGCAT

ACGAGATTCGCCTTAGT

CTCGTGGGCTCGG

Read 1 Custom Primer IDT, standard desalting GCCTGTCCGCGGAAGCA

GTGGTATCAACGCAGAGTAC

Software and algorithms

GraphPad PRISM https://www.graphpad.com/ Version 8.4.3

Aperio Imagescope https://www.leicabiosystems.com NA

Seurat https://satijalab.org/seurat/ Version 3.1.4

R https://www.r-project.org/ Version 3.6.1

dmatch https://qzhan321.github.io/dmatch/ Version 0.1.8
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anindita

Basu (onibasu@uchicago.com)

Materials availability
This study did not generate new unique reagents.

Data and code availability
The single cell dataset generated during this study have been deposited toGene ExpressionOmnibus (GEO) repository (https://www.

ncbi.nlm.nih.gov/geo/) with the dataset identifiers GSE147082.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ovarian cancer tissue was collected fromwomen undergoing debulking surgery at the University of ChicagoMedical Center. Human

tissue acquisition after patient deidentification was approved by the University of Chicago Institutional Review Board for research.

Ovarian cancer tissue was histologically classified and staged by a pathologist according to tumor-node-metastasis (TMN) and/or

International Federation of Gynecology and Obstetrics (FIGO) classifications (Table 1).

METHOD DETAILS

Immunohistochemistry
Ovarian cancer tissues obtained fresh from surgery were fixed overnight in 4% formaldehyde at 4�C. After serial dehydration,
the tissues were embedded in paraffin and cut into 5 mm thick sections. Histological evaluation was done with hematoxylin and

eosin (H&E). Immunohistochemical staining was performed to confirm the presence of cytokeratin-7 (Thermo Scientific), TOX

(Thermofisher), pan-vimentin (DAKO), CD45 (Agilent), CD4, CD8a, CD68, CD163, CD19 and GNLY (Abcam) positive cells. Briefly,

sections were deparaffinized and rehydrated using xylene and serial dilutions of EtOH in distilled water. Tissue sections were incu-

bated in citrate buffer, pH 6 and heated in a microwave oven. Anti-cytokeratin-7 (1:1000), anti-vimentin (1:100), anti-CD45 (1:100),

anti-CD4 (1:50), anti-CD19 (1:200), anti-CD8 (1:400), anti-TOX (1:200), anti-CD163 (1:2), anti-CD68 (1:40) and anti-GNLY (1:2000)

antibodies were applied on tissue sections for one-hour incubation at room temperature in a humidity-controlled chamber. The

antigen-antibody bindings were detected with labeled polymer-HRP Envision system (DAKO, K4007) and DAB+ chromogen

(DAKO, K3468) system. Tissue sections were briefly immersed in hematoxylin for counterstaining and covered with cover glasses.

We used Imagescope, a digital histopathology software, to annotate and quantify the H&E and IHC staining.

Tissue digestion, red blood cell lysis and dead cell removal
Ovarian tumors were transported in DMEM/F12 containing 10% FBS and 1% P/S (10% DMEMF/12) on ice to the laboratory. The

tissue was minced manually with a scalpel and enzymatically digested using 1.5 mg/ml collagenase IV (Sigma-Aldrich), 1 mg/ml hy-

aluronidase (Sigma-Aldrich) and 500 mg/ml DNase I (GoldBio) in Hank’s balanced salt solution (HBSS) in a 37�C shaker (200 rpm) for

0.5 – 2 h. Following digestion, adipocytes were separated from the stromal vascular fraction (SVF) by centrifugation and discarded.

Note that the size and density of adipocytes make them unamenable to droplet based single-cell RNA-seq. SVF cells were resus-

pended in 10% DMEMF/12 and filtered serially through 70 mm and 40 mm strainers. Red blood cells were lysed by incubating the

cell pellet in RBC lysis buffer (Miltenyi Biotec, 130-094-183) for 2 minutes. Lysis was quenched by adding excess 10% DMEMF/

12. The number of live cells was enriched using the dead cell removal kit (Miltenyi Biotec, 130-090-101) according to manufacturer’s

instructions.

Drop-seq experiments
Drop-seq experiments were performed as previously described (Macosko et al., 2015). Briefly, cells were loaded at a concentration

of 100,000 cells/ml in PBS and 0.01%BSA (NEB, #B9000S) and the barcoded beads (Chemgenes) at 120,000 beads/ml were loaded

in Drop-seq lysis buffer consisting of 0.2% Sarkosyl (Teknova, #S3376), 6% Ficoll (Sigma, #F5415-50ml), 0.02 M EDTA (Fisher,

#BP2482-500), 0.2 M Tris-HCl pH7.5 (Fisher, #BP1757-500), and 0.05 M DTT (Teknova, #D9750) in water (Invitrogen, #10977-

015). Droplets were generated using a 125-micron Drop-seq microfluidic device and inert oil-surfactant mix (BioRad, #1864006)

at 16 mL/hr (oil), 4 mL/hr (cells) and 4 mL/hr (beads) with �15 minutes per collection. Following collection, drops were broken in

50 mL conical tubes using perfluorooctanol (Synquest, #2101-3-20) and spin down at 1000 xg for 1 min. Barcoded beads with

mRNA hybridized onto them were collected from the oil-water interface using a 1 mL pipette and transferred to a fresh 50mL conical

tube. The mRNA-bound barcode beads were washed three times in 30 mL of 6x Saline-Sodium Citrate solution (Teknova, #S0282),

transferred to a 1.5 mL centrifuge tube and washed once in 500 mL of 1xMaxima H- RT buffer (Thermo, #EP0751). Reverse transcrip-

tion (RT) was performed on the beads in a modified RT recipe consisting of 1x Maxima H- RT buffer, 4% Ficoll PM-400 (GE Health-

care, #17-0300-05), 3 mMMgCl2 (Sigma, #M1028), 1 mM Betaine (Sigma, #14300), 1 mM dNTP (Clontech, #639125), 1 U/mL RNase

Inhibitor (Lucigen, #F83923), 2.5 mMTemplate-Switching Oligo (TSO) primer: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG (IDT),

and 10 U/mL Maxima H- RT enzyme (Thermo, #EP0751) in a total volume of 200 mL. RT was performed by a 30-minute incubation at

room temperature, followed by a 90-minute incubation at 50�C, both under end-over-end rotation.

Barcoded cDNA attached to the beads or STAMPswere generated by reverse transcription were thoroughly washed (in 0.5%SDS

and 0.02% Tween 20 each in Tris-EDTA buffer), treated with 1 U/mL exonuclease I (Fisher, #M0293L), rewashed and the number of

STAMPswas counted. 5000STAMPswere aliquoted perwell in a 96-well plate and the cDNA attached to the STAMPswere amplified

through 14 PCR cycles using 1x Kapa Hifi Hotstart Mastermix (Fisher, #NC0465187) and 2.5 mM PCR primer: AAGCAGTGGTAT

CAACGCAGAGT (IDT). Supernatant from each well was pooled and cleaned with 0.6X Ampure beads. Purified cDNA was quantified

using Qubit 3.0 (Invitrogen). 450-650 pg of each sample with standard Nextera P7 primer and custom P5-TSO hybrid oligo: AATGA

TACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C and were used as input for Nex-

tera library preparation (12 PCR cycles; Illumina, #FC-131-1096). Tagmented libraries were quantified using Agilent BioAnalyzer

High Sensitivity chip before submission for sequencing on Illumina’s NextSeq 500, using 75 cycle v3 kits. Paired end sequencing
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was performed with 20 bp for Read 1 and 64 bp for Read 2 using custom Read 1 primer, GCCTGTCCGCGGAAGC AGTGGTAT

CAACGCAGAGTAC and 5% Illumina PhiX Control v3. The data discussed in this publication have been deposited in NCBI’s

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147082.

Data processing, alignment and clustering analysis
The ovarian cancer samples from six patient’s metastatic omentum were sequenced with Drop-seq. A total of 13 sequencing runs

were performed for six Drop-seq samples where each sample was sequenced at least twice (PT-2 was sequenced three times). Each

run produced paired-end reads, with Read 1 representing the 12 bp cell barcode and a six bp long unique molecular identifier (UMI)

and Read 2 representing a 60-64 bpmRNA fragment. Paired-end reads from the same samples were merged to generate six paired-

end fastq files. Read count matrices were generated from sequence reads from the Drop-seq experiments for both exonic and in-

tronic regions in the human genome (gencode hg38 v.27) using a snakemake pipeline (Selewa et al., 2019) and STAR version 2.5.3

aligner (Frankish et al., 2019; Dobin et al., 2013). Individual count matrices were produced for each of the six patients after accounting

for UMI duplicates.

The summarized counts for each gene were inferred based on both exonic and intronic reads to produce the gene expression ma-

trix per sample. To select high quality cells, we applied a filter based on the number of genes detected per cell. Prior to filtering, each

sample produced approximately 5,000 cells. Based on the median number of genes captured, cells with less than 600 genes with

detected expression were removed from the datasets (Tables 2 and S1). We followed a standardized pipeline using single cell anal-

ysis tool suite, Seurat v3.0.2 (Butler et al., 2018; Stuart et al., 2019). A global-scaling logarithmic normalization method (Stuart et al.,

2019) was applied to all samples that normalized the feature expression counts for each cell by the total expression counts, multiplied

by a scale factor of 10,000 (TP10K), and transformed the scaled data to log units with a small shift (+1) to handle 0 counts. Each

normalized matrix was then scaled by a linear transformation to center the mean gene expression for all cells. The most variable

genes were extracted for principal component analysis (PCA). We applied PCA on the normalized expression matrix with the

most variable genes to extract the top 50 components in the data, followed by a heuristic ‘elbow’ plot on the variance explained

of each PC.We selected the number of top variant PCs based on the elbow plot which varied from 10 to 20 depending on the sample.

The top PCs were used in further exploration of the data, such as UMAP (Mcinnes et al., 2018) dimension reduction, construction of

K-nearest neighbor graphs, shared nearest neighbor modularity optimization-based clustering (Waltman and Eck, 2013), etc. For

analysis that included multiple samples, integration through anchoring (Stuart et al., 2019) was applied. A subset of genes, usually

highly variable ones, was selected to perform the integration, where the integrated gene expression matrix had a lesser number

of features (genes) than the original gene expression matrix. The samples from multiple patients were integrated before classifying

cell types. Differential expression analysis was performed through FindMarkers function in Seurat using theWilcoxon Rank Sum test,

and statistically significant markers were extracted for sub-populations or contrast groups based on an adjusted p value (adj. p-val.)

threshold of 0.05. We used dimension reduction methods, UMAP (Mcinnes et al., 2018) to generate 2D plots to visualize different cell

populations in the experiments.

Cancer subtype classification and correlation with The Cancer Genome Atlas
Four cancer subtypes- differentiated, immunoreactive, mesenchymal, and proliferative were determined from previous bulk

sequencing study in ovarian cancer (The Cancer Genome Atlas Research Network, 2011). Modular scores (Tirosh et al., 2016)

were generated between gene expression levels for each cell with upregulatedmarker signatures on the four subtypes. The subtypes

were then assigned to individual cells by the highest positive modular score. In the absence of positive modular scores, the subtype

was considered undecided.

Cell type classification and correlation with CellAtlas
To assign cell types to individual cells, we used a bulk RNA sequencing data-set from 95 cell lines collected by CellAtlas (Mabbott

et al., 2013) that covered 33 major cell types in normal human tissue, including common immune, endothelial, epithelial, fibroblast

and mesodermal cells. The cell lines can be further divided into 60 subtypes. We inferred the similarity between individual cells in

the samples and cell lines by calculating the pairwise Pearson correlation matrix C = {cor(i,j)} between any cell i from the Drop-

seq experiments with any cell line, j in the CellAtlas leveraging the R package dmatch (Chen et al., 2021). Ward’s hierarchical agglom-

erative clustering was applied on the CellAtlas cell lines to group the cell lines into larger and more general cell type categories. This

was done to eliminate any bias in the CellAtlas dataset and remove rare or under-powered cell types. The resulting clusters of cell

lines were annotated by the most frequent major cell type from the cell-line groups. For each cell in our tumor samples, cell type was

assigned from top five highly correlated major cell type clusters. Ambiguous cell types were collapsed with neighboring cell types,

based on expression profiles.

Classification with cluster markers, canonical genes, and genetic functions
We used the cell types obtained from CellAtlas correlation as a baseline and then curated those cell types manually using canonical

genes and functional association. Differentially expressed marker genes were extracted from cell clusters. Cross-referencing was

done between gene markers and known canonical genes of the cell types. Gene ontology and pathway enrichment was performed

on gene markers to provide additional evidence for cell type assignment (Chen et al., 2009). We identified nine major cell types
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including: epithelial cells, fibroblast, mesenchymal stem cells (MSC), embryonic stem cells (ESC), endothelial cells and three immune

cell types: naive and plasma B cells, T cells, and macrophages.

GeneOntology (GO) and Pathway analysis sometimes gives general/noisy functional categories whichmake certain cell types hard

to identify. By leveraging prior knowledge from the CellAtlas mapping, we were able to locate the relevant functional categories for

those cell types and narrow down their marker genes efficiently (Mabbott et al., 2013). Moreover, by leveraging the consensus of both

GO and CellAtlas analysis, we obtained higher confidence in classifying cell types in each patient sample.

Marker identification for subtypes of various cell populations
To explore the cellular subtypes in detail, we analyzed cells belonging to four major clusters by hierarchical clustering strategy. These

included the central cluster (containing cancer epithelial cells and ESCs), as well as all three immune sub-populations; T cells, B cells

(including plasma cells), and macrophages separated by groups (high Tinf and low Tinf). The significance of differential gene expres-

sion was estimated using theWilcoxon rank-sum test. We used a cutoff of 0.05 on the adj. p-val. to distinguish the significant markers

for each sub-population.

Comparison and validation with bulk sequencing data from The Cancer Genome Atlas (TCGA) program
To compare gene expression levels among TOX, GNLY, CD4, and CD8 between different ovarian cancer molecular subtypes, we

extracted bulk RNA-seq data from 368 serous ovarian cancer patient samples from the TCGA Research Network: https://www.

cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. The bulk RNA-seq gene expression matrix included

56,431 transcripts and 368 samples associated with 25 batches. We performed log normalization on expression counts, scaling

of centered expressions, and regressed out batch variable from the scaled expression data. Four subtypes- differentiated, immuno-

reactive, mesenchymal, and proliferative were assigned to each sample. The correlations were measured using the Pearson method

for all four subtypes between the two gene-pairs: TOX/CD8 and GNLY/CD4. Statistical significance for each correlation was esti-

mated based on a t-distribution with n-2 degrees of freedom where n is the number of samples per cancer subtype. The significance

was determined by a p value cutoff of 0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

IHC staining images were analyzed and quantified using Aperio ImageScope [v12.4.05043]. Statistical analysis is summarized in

figure legends. Correlation between area of adipocytes and vimentin, CK-7 and CD45 was assessed in Prism 9 (GraphPad; 8.4.3)

by one-way ANOVA.
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